
BIRD: Binary Interpretation using Runtime Disassembly

Susanta Nanda Wei Li Lap-Chung Lam Tzi-cker Chiueh
{susanta,weili,lclam,chiueh}@cs.sunysb.edu

Department of Computer Science
SUNY at Stony Brook

Stony Brook, NY 11794-4400

Abstract

The majority of security vulnerabilities published in the
literature are due to software bugs. Many researchers have
developed program transformation and analysis techniques
to automatically detect or eliminate such vulnerabilities. So
far, most of them cannot be applied to commercially distrib-
uted applications on the Windows/x86 platform, because
it is almost impossible to disassemble a binary file with
100% accuracy and coverage on that platform. This pa-
per presents the design, implementation, and evaluation of
a binary analysis and instrumentation infrastructure for the
Windows/x86 platform called BIRD (Binary Interpretation
using Runtime Disassembly), which provides two services
to developers of security-enhancing program transforma-
tion tools: converting binary code into assembly language
instructions for further analysis, and inserting instrumen-
tation code at specific places of a given binary without af-
fecting its execution semantics. Instead of requiring a high-
fidelity instruction set architectural emulator, BIRD com-
bines static disassembly with an on-demand dynamic dis-
assembly approach to guarantee that each instruction in a
binary file is analyzed or transformed before it is executed.
It takes 12 student months to develop the first BIRD proto-
type, which can successfully work for all applications in Mi-
crosoft Office suite as well as Internet Explorer and IIS web
server, including all DLLs that they use. Moreover, the ad-
ditional throughput penalty of the BIRD prototype on pro-
duction server applications such as Apache, IIS, and BIND
is uniformly below 4%.

1. Introduction

A large number of computer system vulnerabilities are
due to software bugs. Researchers have proposed various
program transformation and analysis techniques to seal se-
curity holes. For example, they can prevent buffer over-
flowing [10, 22], detect tampering of control-sensitive data

structures [10, 22], extract sandboxing policy [15], etc.
Most of these research projects assume that the source code
of the input programs is available. This assumption is un-
realistic in practice, because end users rarely have access
to the source code of their applications, many of which are
created and owned by separate vendors. If these security-
enhancing transformations and analysis techniques can be
applied to executable binaries directly, it will mark a giant
advance in cybersecurity because end users can apply them
to their applications on their own. This paper describes the
design, implementation, and evaluation of a binary analysis
and instrumentation infrastructure for the Windows oper-
ating systems running on Intel x86 machines called BIRD
(Binary Interpretation using Run-time Disassembly), which
can serve as the basis for building these security-enhancing
binary transformation tools.

BIRD provides two services to its users with respect to
an executable binary: (1) translating the binary file into
individual instructions and (2) inserting user-specified in-
structions into the binary file at specified places. In theory,
one can disassemble the input binary into its corresponding
assembly language program, insert instrumentation code
into it at proper places, and re-assemble it into a new bi-
nary. In practice, this is not possible for Windows/x86 bina-
ries because state-of-the-art disassemblers rarely can fully
disassemble large Windows/x86 binaries, especially when
they do not come with any debug information such as PDB
file [1], symbol table, etc. Unfortunately, most commer-
cially distributed Windows/x86 binaries do not carry debug
information. Because complete static disassembly is not
possible, instrumentation cannot be done completely stat-
ically, either.

Some commercial disassemblers such as IDA Pro can
report high static disassembly coverage because they are
mainly designed to facilitate reverse engineering of exe-
cutable binaries, and thus can afford to make occasional er-
rors in disassembly results. In contrast, BIRD is designed to
support binary instrumentation, and therefore has zero room
for disassembly errors. Consequently, BIRD is required to



adopt conservative disassembling techniques that guarantee
100% disassembly accuracy but may achieve lower disas-
sembly coverage than these commercial disassemblers.

To overcome the limitation of static disassembling,
BIRD applies disassembly both statically and dynamically.
Given an executable binary, BIRD first disassembles it stati-
cally to uncover as many instructions as possible, and marks
these instructions asknown areas, leaving the rest asun-
known areas. At run time, when the program’s control is
transferred to an unknown area, BIRD disassembles the un-
known area as much as it can, and continues with the pro-
gram execution. By integrating static and dynamic disas-
sembling, BIRD is able to guarantee that every instruction
in the input binary be analyzed/transformed before it is ex-
ecuted, while reducing the associated binary interpretation
overhead to the minimum.

Instead of rewriting, BIRD takes aredirectingapproach
to binary instrumentation. In theory, this involves nothing
but putting the code to be inserted in an unused region, and
introducing a jump instruction at the instrumentation point
that points to the inserted code. In practice, because a jump
instruction takes 5 bytes, it is not always possible to find
enough bytes at the instrumentation point for this substitu-
tion. BIRD performs both control flow and data flow analy-
sis to guarantee that inserting these jump instructions never
affect the program execution semantics. In the worst case,
BIRD resorts to the breakpoint instruction (int 3 on x86)
when it cannot find enough bytes to hold the re-directing
jump instruction. Furthermore, BIRD performs sophisti-
cated instruction patching and stack fixing to ensure the
correctness of the inserted and replaced instructions. BIRD
instruments the known areas of a binary file statically, but
instruments the unknown area only at run time, i.e., before
the program control is actually transferred to them.

The main target of BIRD is commercial Windows/x86
binaries without debug information. It is not meant
to be a universal disassembler that can handle binaries
which are obfuscated, encrypted/compressed, or in gen-
eral self-modifying, such as polymorphic virus or tamper-
resistant software. Fortunately, most production-mode Win-
dows/x86 application binaries, although not perfectly well-
behaved, rarely contain any of these anti-disassembler or
anti-debugger code. As a result, the BIRD prototype is able
to correctly work on all the applications we have tested, in-
cluding all applications in the Microsoft Office Suite, In-
ternet Explorer, IIS web server, and system DLLs such as
kernel32.dll , user32.dll , ntdll.dll , etc.

2. Related Work

Microsoft’s Vulcan [27] applies static disassembling to
instrument and optimize binary programs. It extracts an ab-
stract representation from the input binary and the libraries

it needs, inserts the instrumentation code to the abstract rep-
resentation, optimizes it, and converts it into another binary
for the target machine. All this happens at the link time. The
disassembler in Vulcan depends on the symbol table infor-
mation, which is available for example in the PDB file gen-
erated by Microsoft’s Visual C++ compiler. For most com-
mercially distributed Windows applications, including Mi-
crosoft Office suite, symbol table information is not avail-
able, and therefore Vulcan is not directly applicable. Be-
cause the target users of Vulcan are developers, the assump-
tion that symbol table information is available is reasonable.
However, BIRD cannot make this assumption because it is
meant to be a part of binary transformation tools that are
going to be used by end users, who rarely have access to
their applications’ symbol table information.

There are many link-time optimizers. OM [29] aims at
inter-module code optimizations at link time. It relies on
the relocation tables available in the object files, and cannot
operate on cooked binaries without symbol table informa-
tion. ATOM [28] is built on OM and further provides a
framework for building customized program analysis tools.
Plto [23] is closer to BIRD in that it is also targeted at
the x86 platform. Plto first collects execution traces from
the target binary’s runs, and uses them to verify and im-
prove static disassembly results. This approach is used in
Strata [26] as well. In contrast, BIRD combines static and
dynamic disassembling and completely avoids the trace col-
lection step.

Disassembling Windows/x86 binaries is a difficult prob-
lem for two reasons: variable-sized instructions (in con-
trast to the RISC architecture where instructions are of fixed
length) and presence of data inside the code section, some
portion of which may not be reachable statically. Earlier
disassemblers, like the one illustrated in [24], used a hybrid
approach that combines control flow with linear traversal
techniques to improve coverage. To further increase cov-
erage, disassemblers apply speculative disassembly tech-
niques [8] that make certain assumptions to continue the
disassembling process but later try to confirm them in order
to accept the disassembling results. For example, Kruegel
et al. [14] apply control flow graph analysis and statisti-
cal methods to increase the probability of producing correct
disassembled instructions. Similarly, BIRD uses a confi-
dence scoring mechanism (described later in section 3) to
measure the validity of the disassembled instructions and
then chooses those whose score exceed a certain threshold.
While the speculative disassembly approach may be fooled
by advanced anti-disassembling techniques [17], our expe-
riences show that it works fine on most commercially dis-
tributed Windows binaries. BIRD also leverages from some
more sophisticated techniques, such as jump table recov-
ery [7] to further increase the coverage. Ideas similar to
function prologs and call targets can also be found in [14].



The ultimate goal of BIRD is to allow a binary trans-
formation tool to apply a proper transformation on every
executed instruction before its execution. In this sense,
BIRD is related to binary interpreters, which execute a com-
piled binary on a software simulator or a hardware emu-
lator. Using the idea of software dynamic translation, the
Strata project [25] creates an infrastructure on which a vir-
tual execution system can be built. Strata uses a virtual
CPU, which is implemented in software, to mimic the tar-
get RISC architecture (e.g. fetch/decode/translate) and in-
terpret instructions at run time to discover executed instruc-
tions. In addition, the virtual CPU also supports memory,
cache, and context management. In contrast, BIRD dis-
assembles unknown instructions at run time without actu-
ally ever executing them. Thus, BIRD does not require
any high-fidelity instruction set architecture emulator. Val-
grind [20], Pin [18] are a few more tools that try to do a
similar job; however, these use JIT compilation as their core
technology to achieve the translation. DIOTA [19] is an-
other tool that clones the code sections of a binary and ap-
plies all the instrumentations on the cloned code pages. By
using the original pages for all data accesses, it makes sure
any error in instrumentation does not break the program. In
contrast, BIRD uses extra memory region for instrumenta-
tion code only and does not clone the code pages. The idea
of using jump and trap instructions to instrument is already
explored in DynInst [5]. BIRD implements it in a different
way to improve the performance.

The Embra project [31] develops an emulator of the
MIPS R3000/R4000 processors, including the caches and
memory systems. To speed up emulation, Embra translates
blocks of instructions into native code that simulates the ex-
ecution of the original block. The system allows the user
to dynamically change the level of simulation detail (such
as presence of caches, for example), and incurs an execu-
tion overhead of 200% to 800%. Also there are several
software-based open source emulators currently available,
such as Bochs [4] and Plex86 [21].

EEL project [16] develops a system-independent edit-
ing model that allows programmers to write binary edit-
ing tools in an architecture- and OS-independent manner.
It provides a number of abstractions such as an executable,
a routine, control-flow graph, etc. EEL relies on the sym-
bol table of a binary to detect the starting addresses of its
procedures. However, if the symbol table is not available,
EEL employs static disassembly techniques to discover the
procedures’ entry points. Unfortunately, EEL only runs on
SPARC machines under SunOS and Solaris. Etch [11] is
a framework for dynamic instrumentation and optimization
of Win32/x86 executables. It provides a generalized API
that allows custom optimization tools to interact with the
core tracing engine. However, the implementation details
on Etch are not publicly available.

Dynamo [3] is a binary interpretation and optimization
system running on HP PA-8000 machines under HPUX
10.20 operating system. Its key idea is to use a software-
based architectural emulator to detect so-called hot traces,
i.e. sequences of frequently executed instructions, and op-
timize them dynamically so that they can run faster. De-
spite the binary interpretation overhead, Dynamo is able to
achieve a non-trivial speedup of 15%-22% for some bina-
ries when compared with their native execution time. Dy-
namo has been ported to the Win32/x86 platform [6]. It
turns out that the Win32/x86 version runs much slower and
incurs an overhead of about 30% to 40%. The reasons be-
hind this are lack of documentation on Win32 API and addi-
tional implementation complexities that are not present on
UNIX platform. Like BIRD, Dynamo can serve as a foun-
dation for security applications. Program shepherding [13]
is one such example. By using a disassembler, BIRD re-
duces the implementation complexity a lot when compared
to Dynamo.

3. Disassembly Algorithm

BIRD’s disassembler consists of two passes. In the first
pass, the disassembler usesrecursive traversal, which sta-
tically traverses the control flow graph of the input binary
starting from its main entry point, and discovers all in-
structions that are reachable through direct branches, i.e.,
branches whose target address is known statically. All the
other bytes in the input binary that are not reachable in the
first pass are calledunreachablebytes. In the second pass,
the disassembler assumes some unreachable bytes as in-
structions, and then performs the same control flow graph
traversal from these speculative instructions. In this tra-
versal process, the disassembler accumulates a confidence
score on the possibility of an unreachable byte being an in-
struction. At the end of the second pass, a block of bytes
are considered instruction bytes if and only if their score all
exceed a certain threshold and its first bytes are indeed the
target of some control transfer instruction. BIRD’s disas-
sembler does not require any debugger information such as
PDB file, and works directly with commercially distributed
Windows applications. The only assumptions it makes are

• The byte immediately following a conditional branch
instruction starts an instruction.

• No two instructions in the input binary overlap.

However, BIRD’s disassembler does not assume the bytes
following unconditional jumps, returns or function calls
to be instructions. Applying recursive traversal with the
above assumptions typically uncover only a small percent-
age (<30%) of the instructions in a PE binary. To improve
the coverage without sacrificing accuracy, BIRD’s disas-



sembler performs a second-pass recursive traversal assum-
ing the following types of unreachable bytes as instructions:

• Bytes corresponding to an apparent function prologue,
i.e.,push ebp, mov ebp, esp

• Bytes corresponding to the target of a call instruction
pattern, i.e.,call x

• Bytes corresponding to jump table targets.
• Bytes immediately following a jump/call or return.

The second-pass traversal is speculative in nature, and is
designed to uncover as many candidate instruction bytes as
possible. Not all of these candidate instruction bytes are
classified as instruction bytes in the end. Those candidate
instruction bytes that lead to instruction overlap or incorrect
instruction format are automatically pruned. Then it cal-
culates a confidence score for each second-pass reachable
byte using the following heuristic scores:function prolog
(8), target of function call(4), jump table entry(2), target
of (un)conditional branch(1), bytes after a jump or return
(0), anddata reference(0). For example, if an instruction
byte is part of an apparent function prolog (a jump table
entry), its confidence score is increased by 8 (2). When
encountering a call instruction in the second pass, the dis-
assembler increases the score of both source and destina-
tion bytes of this branch instruction by 4. Because standard
compilers typically generate a well-defined prolog for each
function, bytes matching a function prolog are considered
more likely to be instructions than bytes after a jump or re-
turn. Statistically, a call relationship is more reliable than
a short branch, because a function call instruction normally
takes 5 bytes while a short branch takes only 2 bytes. Al-
though the second-pass traversal uses bytes after a jump or
return instruction as starting points, the fact that these bytes
are after a jump or return does not contribute to their final
score, because it is not uncommon that bytes following a
jump or return are actually data.

The confidence score mechanism attempts to capture the
essential difference between data and instructions bytes:
it is unlikely that data bytes can accumulate multiple ev-
idences that indicate that they are instructions. The final
criteria used to determine if a block of bytes correspond to
an instruction sequence are the following conditions: (1)
their confidence score is above a threshold (currently set
to 20), and (2) the first byte of this block correspond to a
function prolog, a jump table entry, or a target of a func-
tion call. Once BIRD’s disassembler decides that a block
of bytes correspond to a function, say F, it uses this infor-
mation to confirm bytes appearing in functions that F calls
directly or indirectly as instructions.

To increase the number of possible starting points for the
speculative recursive traversal in the second pass, BIRD’s
disassembler performs additional analysis to recognize con-
structs such as a jump table, which is a data block composed

of a sequence of target addresses, and is used to support
control constructs such asswitch statements in C. Nor-
mally, a program using a jump table calculates an index of
the jump table, and then takes an indirect jump whose tar-
get address is the jump table entry corresponding to the in-
dex. To recognize jump tables, BIRD’s disassembler starts
with memory references of the form of a base address plus
four times a local variable, and then examines the region
surrounding the base address to identify a continuous se-
quence of words each of which is both aligned and pointing
to a valid instruction. Because an instruction immediately
preceding a jump table could also include one or two ad-
dresses as its operands, entries in the discovered sequence,
except the first two, are marked as jump table entries. The
nature of the first two entries will be determined when the
nature of their preceding bytes is determined later on.

In addition, BIRD’s disassembler leverages the binary
format to discover more starting points. First, some data
embedded in the code section could be identified from the
binary format. For example, the location of a Windows
binary’s import address table is specified in the binary’s
header. Second, a binary’s export table entries, which
are locations of exported functions or variables, indicate
whether the corresponding bytes are instructions or data.
Third, the relocation table, which typically comes with
DLLs, greatly simplifies the task of identifying jump tables,
as each jump table entry should have a corresponding re-
location entry. Relocation table entries could also be used
to check validity of candidate instructions. For example, a
relocation table entry should never point to an instruction
without data/address reference.

4. BIRD Run-Time Architecture

4.1. Overview

Figure 1 shows how BIRD interprets each instruction in a
Windows binary before it gets executed. Given an input bi-
nary, BIRD first disassembles it statically as much as it can,
and label those parts that are successfully disassembled as
known areas(KA), and those that are not asunknown ar-
eas(UA). Any application-specific instrumentation is stati-
cally applied to the KAs only. BIRD disassembles the un-
known areas at run time by intercepting control transfers
from known areas to unknown areas. The only instructions
in the known areas that could jump to unknown areas are
indirect branches, which are control transfer instructions
whose target is computed using contents of a memory lo-
cation and/or registers, e.g., indirect jump and call, and re-
turn instruction. In addition, control could be transferred to
an unknown area because it contains callback functions and
exception handlers, which are invoked by the kernel. We
will focus on indirect branches first.



Win32 Exe. File X

Exe. Aux. File Info

Static−patched Binary

BIRD’s Static Disassembler

BIRD Runtime Engine

Instrumentation
Engine

Checking
Engine Disassembler

Dynamic

Figure 1: BIRD’s architecture consists of a static disassembler and
a run-time engine, which in turn consists of a dynamic instrumen-
tation and a dynamic disassembler. During an application’s startup,
BIRD’s run-time engine is loaded into the application’s address space
as a DLL. BIRD patches all indirect branches so that it can intercept
them at run time and dynamically disassemble the statically unknown
areas.

BIRD takes control at indirect branches by replacing
them with a jump to a special functioncheck() , which
is the core of BIRD’s run-time engine and performs the fol-
lowing functions:

• Calculate the target address of the replaced indirect
branch,

• Check if the target falls into an UA, and if so invoke
the dynamic disassembler to convert the UA or part of
it into a KA,

• Perform application-specific instrumentation on the
newly discovered instructions, and

• Execute the replaced instructions.

The output of BIRD’s static disassembler consists of (1)
a list of UAs (UAL), and (2) the locations of the indirect
jumps/calls and how they should be patched (IBT). Both
UAL and IBT are appended to the input binary as a new data
section [9], and read in at startup time and stored in main
memory as a hash table. Indirect branch target is computed
by executing a push instruction with the data operand same
as that of the original instruction (for example, fromcall
[eax+4] to push [eax+4] ) and then reading from the
stack. To determine if the computed target address falls into
an UA, check() consults the UAL through a hash look-
up. To speed up the common case in which the target falls
into a KA, check() also maintains a KA cache, which
is also organized as a hash table. After invoking the dy-
namic disassembler on an UA, the UA could totally vanish
if all of its bytes are explored, could become smaller if its
tail is explored, or could be broken into two disjoint pieces.
Check() updates the UAL accordingly.

To ensure that the instructions replaced by a call to
check() are executed insidecheck() in exactly the
same architectural context as the original case,check()

saves the original stack and register state once it takes con-
trol and restores them before executing the replaced instruc-
tions. After these replaced instructions are done, the con-
trol is transferred back to the corresponding instrumentation
point.

The initialization routine andcheck() of BIRD’s run-
time engine is organized as a DLL calleddyncheck.dll ,
and is completely independent of the applications being
instrumented. By modifying the import table of the in-
strumented application,dyncheck.dll is automatically
loaded when the application starts up. Because the ini-
tialization routine of a DLL always gets control when the
DLL is loaded [1], this enables BIRD to read in the applica-
tion’s UAL and IBT and initialize required data structures
before the program’s main function starts. As a DLL func-
tion, check() can directly access an application’s UAL
and IBT using symbolic names. Since many real-world
Windows applications use DLLs extensively, BIRD needs
to support arbitrary DLLs. More specifically, it requires all
such DLLs to be disassembled a priori so that their UAL and
IBT are available beforehand, and modifies their initializa-
tion routine to read in their own UAL and IBT in exactly the
same way as executable files. Because a program’s import
table may be immediately followed by some other data, it
is not always possible to increase its size directly. To solve
this problem, BIRD keeps the old import table, creates a
new import table that contains the original import table en-
tries and any new entries we want to add, and modify the
import table address field in the binary’s header to point to
the new import table.

4.2. Callback Functions

Windows provides several mechanisms by which a
user-level application can supply the entry point of a
callback function that the kernel can call upon certain
event(s). For these callback functions, there are no ex-
plicit call sites inside the applications. Windows sup-
ports three types of callbacks:exception handler, call-
back function, and asynchronous procedure call(APC).
They all work in a similar way, so we will focus
only on callback functions. When the kernel invokes
a callback function, it switches context and jumps to
KiUserCallbackDispatcher() in thentdll.dll
library. KiUserCallbackDispatcher() then calls a
function in user32.dll to look for the corresponding
user-supplied function in a special data structure, which was
initially populated when the application registered the call-
back, and to invoke the callback function if found. When
the callback function is finished, theuser32.dll routine
traps back to the kernel for further processing by executing
the instructionint 0x2B .

Because a callback function is invoked from a



user32.dll routine through a function pointer, BIRD
can analyze/transform the instructions in callback functions
before they are executed without any additional mecha-
nisms. However, BIRD cannot intercept the control transfer
from the kernel toKiUserCallbackDispatcher()
when it invokes a callback function. Fortunately, this
interception is not necessary because BIRD can stati-
cally disassemble functions in system DLLs (ntdll.dll ,
kernel32.dll , and user32.dll ) with the help of
their export tables, which contain symbol and location in-
formation for every exported DLL function. Since each
of these routines that the kernel jumps to are exported by
ntdll.dll , BIRD can statically analyze/transform the
instructions and does not need to intercept the kernel-to-
user control transfer at run time. Although export tables
could potentially contain entries corresponding to variables
as well,ntdll.dll does not contain any such cases. Now
that BIRD has its control onntdll.dll functions, it dis-
assembles and transforms/patchesuser32.dll as it does
with other DLLs and handles the indirect calls to user-
supplied callback functions in exactly the same way as nor-
mal indirect calls.

Exception handlers can potentially change the control
flow as a side effect of handling the exception. They typ-
ically use theEIP register to indicate where in the appli-
cation should the kernel return control to. Consequently,
when BIRD intercepts the return instruction of an excep-
tion handler, it uses theEIP register rather than the return
address as the target of the return instruction and invoke the
dynamic disassembler if the target happens to fall in an UA.

4.3. Speculative Dynamic Disassembly

Whencheck() encounters an UA through an indirect
branch, it invokes the disassembler to uncover as many in-
structions as possible from that UA. More specifically, the
disassembler scans through the UA starting from the indi-
rect branch’s target address, and keeps on disassembling in-
structions until it reaches a control transfer instruction that
jumps to some KA. Any code area that is uncovered in this
process is merged into existing KAs and the UAL is up-
dated. In addition, all the indirect branches in the new area
are replaced either by a call tocheck() , or a breakpoint
(int 3 ). This allows BIRD to intercept at all these newly
discovered indirect branch instructions.

To reduce performance penalty, dynamic disassembler is
simplified in two aspects: (1) there is no second pass, and
(2) all short indirect branches are replaced by breakpoints.
The first results in more number of calls to disassembler at
the runtime, while the later causes more context switches
due to breakpoints. Our experiences suggest that when the
coverage of BIRD’s static disassembler on an application is
low, the application’s execution time increases dramatically

because of the additionalint 3 instructions.
In general, to achieve high disassembly accuracy, it re-

quires more conservative disassembling strategies, which
imply low disassembly coverage and thus higher run-time
overhead. To attain high disassembly accuracy while min-
imizing the run-time overhead, BIRD uses a speculative
disassembly technique. When BIRD’s static disassembler
disassembles an input binary, it is conservative when out-
putting the unknown area list (UAL) to increase the disas-
sembly accuracy. However, it keeps the disassembled re-
sults of the unknown areas, even if it is not sure whether
they are correct. At run time, when BIRD’s dynamic dis-
assembler is invoked due to an indirect branch instruction
that jumps to an UA, it first checks whether the UA’s spec-
ulatively disassembled result also thinks the branch’s tar-
get address starts an instruction. If so, the dynamic disas-
sembler simply borrows the corresponding portion of the
UA’s speculatively disassembled result without performing
any disassembling; otherwise it disassembles the UA on its
own. Consequently, BIRD can leverage the statically disas-
sembled results that cannot be proven to be 100% accurate
by confirming at run time that their underlying assumptions
are correct. Because BIRD produces these disassembled re-
sults statically, it can afford to use a more sophisticated in-
strumentation scheme, as described in the next subsection,
to replace indirect branch instructions with call instructions
to check() , and greatly reduce the number ofint 3 in-
structions executed and thus the overall run-time overhead.

4.4. Binary Instrumentation

BIRD also provides a binary instrumentation service for
application developers to modify existing binaries. In fact,
BIRD itself also needs to modify the input binaries for inter-
cepting indirect calls/jumps. Because BIRD does not neces-
sarily have access to the entire assembly representation for
an input binary, it cannot instrument the input program at
the assembly level and re-assemble the resulting program.
Instead, it instruments an input binary directly at the bi-
nary level by replacing the instruction at the instrumenta-
tion point with a branch instruction to the user-supplied in-
strumentation code, which is followed by the replaced in-
struction(s) and in the end transfers the control back to the
instrumentation point.

Although conceptually simple, BIRD’s instrumentation
algorithm is surprisingly difficult to implement in practice
for the following two reasons. First and foremost, if the
instruction to be replaced does not have enough space to
accommodate a branch instruction (typically 5 bytes long)
to the instrumentation code, it is not always possible to find
enough bytes surrounding it. In the example in Figure re-
freplacement:fig, thejmp instruction at 401308 is 6 bytes
long which is long enough to be replaced by the call in-



struction tocheck() . What if the instrumentation point
corresponds to a short instruction, e.g., the instruction at ad-
dress 4012ef? Such cases are not rare. As an example, when
BIRD intercepts indirect calls/jumps, in many cases it needs
to replace a 2-byte-long (short) indirect branch likecall
eax by a 5-byte call instruction tocheck() . Our mea-
surements show that the fraction of short indirect branches
among all indirect branches is between 30% to 50% in both
static and dynamic counts. Second, if execution of the re-
placed instruction(s) is required, it is essential to preserve
the same execution context for these instructions when the
control is in the instrumented code. In the example, the in-
struction at 49a03d (add edx, edi ) would depend on
the registersedx andedi . Therefore, to ensure correct-
ness, register values should be preserved for replaced in-
structions.

When the instruction at the instrumentation point is
shorter than 5 bytes, additional bytes could come from the
first one or two instructions immediately following the in-
struction at the instrumentation point as long as doing so
does not affect the program’s execution semantics. In gen-
eral, an instruction issafeto be replaced if it is not the target
of any branch instruction. BIRD takes this one step fur-
ther: it is safe to replace an instruction as long as it is
not the target of any direct branch in the same applica-
tion. Although it might appear to be unsafe to replace an
instruction if it is the target of an indirect branch, it is safe
to do so in BIRD because BIRD intercepts every indirect
branch. At run time, when BIRD finds out that the target
of an indirect branch goes to a replaced instruction, it ex-
ecutes these replaced instruction(s) until the control jumps
out of the replaced bytes. The example in Figure 2 illus-
trates this point, where the function contains two indirect
branches, at addresses 0x4012ef and 0x401308. Because
the first one (0x4012ef) is a short branch, BIRD merges
the following two instructions to create space for a call in-
struction tocheck() . The second one (at 0x401308) is
6-byte long and has enough space, but can potentially jump
to any instructions between 4012ef and 4012f3. However,
as BIRD intercepts this indirect jump, BIRD can check if
the target address lies within [4012ef, 4012f3] and if so,
could directly execute the original instructions in the tar-
get address before jumping to the following instruction at
0x4012f5. For instance, if the target of the indirect jump
at 0x401308 is 0x4012f3, the sequence of action that BIRD
takes is: (1) executejmp [ebx]4 , (2) copy the original
two bytes from 0x4012f3 to some address, (3) executemov
eax, edx , and (4)jump to 0x4012f5. The above algo-
rithm works quite effectively in practice, as most short in-
structions at the instrumentation points can indeed be safely
merged with the following few instructions to create enough
space for a 5-byte call instruction tocheck() .

When BIRD’s static disassembler cannot find any

4012f1 add edx, edi
4012f3 mov eax, edx

4012ef call eax

4012f5 add esi, 4
...

4012ef call eax4012ef call eax

4012f5 add esi, 4
...

4012ef call check

Input Binary

49a010 I1
49a012 I2
...
49a038 In

...

49a03b call eax
49a03d add edx, edi
49a03f mov eax, edx
49a041 jmp fff672af

Instrumented Binary

Instrumentation Code

49a010 I1
49a012 I2

49a038 In

Supplied

is 4012ef
Instrumentation point

401308 jmp [ebx]4 401308 call check
40130e push eax
...

40130e push eax
...

Figure 2: This example illustrates how BIRD can replace instruc-
tions that are potential targets of an indirect branch (in this casejmp
[ebx]4 ) because its run-time engine intercepts every indirect branch
and thus can always run the original target instructions even when
they are replaced.

safe bytes to insert the 5-byte branch instruction, it re-
places the short instruction at the instrumentation point
with a 1-byte breakpoint instruction (int 3 , opcode
0xcc), whose exception handler in turn callscheck() .
In Windows, a program could register multiple han-
dlers associated with an exception, which are invoked
in the order in which they are registered. To ensure
BIRD’s int 3 exception handler is the first to han-
dle all int 3 instructions BIRD puts in, BIRD inter-
cepts theKiUserExceptionDispatcher() function
in ntdll.dll and always invokes BIRD’s breakpoint
handler for BIRD’sint 3 instructions.

The detailed flow of how BIRD replaces an indirect
branch instruction with a branch instruction to its run-time
engine is illustrated in Figure 3(A). At the instrumentation
point, a jump instruction takes the control to a stub, which
consists of an instruction that computes the target address
of the indirect branch instruction, a call instruction to a
check() , the original indirect branch instruction, possibly
a sequence of replaced instructions, and finally a jump in-
struction back to the instrumentation point. Thecheck()
routine itself consists of two components, one for register
state saving and restore and the other (calledreal chk() )
for determining if the instrumented indirect branch jumps
to a known or unknown area. Before callingreal chk() ,
check() looks up its known area cache first. This stub is
statically generated and allocated for each instrumented in-
direct branch instruction. Because replaced instructions are



F1:
...
ret;

Excetion Handler:
extract eip;
t=calc_target(eip)
if(call_inst(eip))
push_retaddr();
real_chk(t);
eip=t;
ret;

real_chk:

if(unknown(trgt))
disassemble(trgt);

lookup(trgt, UAL);

update(UAL);
update(IBT);
ret;

... ...
call eax
Instrn I1
Instrn I2
Instrn I3
... ...

F1:

... ...

Stub:
push eax
call check
call eax
I1
I2
jmp [I3]

jmp Stub

Instrn I3
... ...

F1: real_chk:

if(unknown(trgt))
disassemble(trgt);

lookup(trgt, UAL);

update(UAL);

ret;
update(IBT);

Bird Components

check:
save regs;
trgt=stack[top]
if(trgt not cached)
real_chk(trgt);
restore regs;
ret 4;

Original Program Modified Program

(1)

(6)

(2)

(5)

(3)

(4)

...
F1:

ret;

I3

KERNEL

Modified Program

INT 3
I1
I2
I3

(1)

(2)

(3)

(4)

(5)
(6)

(7)

(B)

Original Program Bird Components

(A)

I2
I1
call eax

Figure 3: In (A), BIRD instruments an indirect branch instruction, in this case call eax , by replacing it and its following two instructions
with a jump instruction to a stub, which calls check() and optionally executes the replaced instructions. Thecheck() routine in turn calls
real chk() to determine if the target falls into an unknown area and if so invoke the dynamic disassembler. In (B), BIRD instruments the indirect
branch instruction call eax by replacing it with an int 3 instruction. BIRD provides an exception handler for the breakpoint exception, and
performs similar functions as the stub andcheck() combined. The numbers on the arcs show the order in which the control is transferred among
various components. In this case, the target function ofcall eax is F1() .

moved from their original location, BIRD needs to update
relocation information if they happen to be targets of reloca-
tion, and convert them into position-independent code, i.e.,
turning all relative offsets into absolute addresses. However,
some instructions can only take relative addresses but not
absolute addresses. and therefore need to be transformed
into two instructions. For example, a relative-offset instruc-
tion jecxz 100 at address 1000 has an absolute target
address of 1102 (offsets are always added to the address
of the following instruction), and needs to be converted
to something likejecxz 10; ..., jmp 1102 , where
the jmp instruction is 10 bytes away from thejecxz in-
struction and comes after the final jump in the stub. Putting
the absolute jump at the end makes sure the execution path
remains correct if the branch is not taken, i.e. ECX is non-
zero.

If an instrumented indirect branch instruction is replaced
with an int 3 instruction, BIRD’sint 3 exception han-
dler will perform similar functions as a stub andcheck()
combined, as shown in Figure 3(B). The only difference is
that to ”execute” the instrumented indirect branch, the ex-
ception handler sets theEIP register to the branch’s target
before it returns to the kernel, and pushes a proper return
address to the stack if the indirect branch is an indirect call.
Since dynamically discovered indirect branches are always
replaced withint 3 instructions, they do not require any
stubs and thus no stubs are generated dynamically.

Application Code Disassem Cove- Accu-
Size(KB) bled(KB) rage racy

lame-3.96.1 241.6 233.6 96.70% 100%
ncftp-3.1.8 192.5 162.4 84.39% 100%
putty-0.56 369.1 354.8 96.12% 100%
analog-6.0 311.2 276.1 88.71% 100%
xpdf-3.00 319.4 275.1 86.12% 100%
make-3.75 122.8 117.3 95.50% 100%
speakfreely-7.2 229.3 160.2 69.97% 100%
tightVNC-1.2.9 180.2 135.0 74.90% 100%

Table 1: Disassembly coverage and accuracy for applications with
source code: The disassembly accuracy is computed based on compar-
ison between the output from BIRD’s disassembler and the assembly
code generated by Visual C++ 6.0.

4.5. Extensions

BIRD’s instrumentation architecture can also be ex-
tended to support arbitrary self-modifying code. There are
three modifications to the original BIRD architecture. First,
BIRD needs to intercept direct branches as well as indirect
branches. This ensures that all branch targets are properly
instrumented before their execution. Since direct branch
targets are no more constsnt, static disassembly can only
work for the first block of the binary, so disassembling is
done mostly dynamically. Second, the dynamic disassem-
bler needs to be more aggressive in identifying replaced in-
structions during binary instrumentation, in order to reduce
the number ofint 3 instructions and thus the associated
performance penalty. Third, when the target of a direct or
indirect instruction falls into a read/write page, BIRD needs



to invoke the dynamic disassembler on the target block even
if the target block has been disassembled previously. More
specifically, every time BIRD’s run-time engine disassem-
bles a block of bytes, it marks the page containing the block
as read-only. If the application tries to modify the page, it
generates a protection fault, which BIRD’s run-time engine
intercepts and turns that page into read-write. The current
BIRD prototype only implements a subset of the above ar-
chitecture and can successfully run Windows applications
that are transformed by binary compression tools such as
UPX [30].

5. Performance Evaluation

5.1. Disassembly Accuracy and Coverage

To evaluate the effectiveness of the disassembly algo-
rithms used in BIRD’s static disassembler, we use two sets
of programs, one with source code and the other without.
The first set of programs, shown in Table 1 come with
source code and hence are readily compilable under Visual
C++ 6.0. They are compiled with the options to generate the
intermediate assembly representation and the program data-
base (PDB) file with detailed symbol information. These
options do not affect the final binary file outputs. Then we
apply BIRD’s disassembler to each application’s binary file
without using any PDB informationto produce an assembly
output, which is then compared with Visual C++ compiler’s
assembly output. Because BIRD is designed to support bi-
nary instrumentation, its disassembly output has to be ab-
solutely accurate, i.e., bytes in the binary file that are identi-
fied as instructions must be indeed instructions. Disassem-
bly accuracy is defined as the fraction of instructions from
BIRD’s disassembler output that match the ground truth, in
this case, the output of the Visual C++ compiler’s assem-
bly code. To measure disassembly accuracy, we first extract
function names from the generated PDB file and identify
each function’s instructions in Visual C++ compiler’s as-
sembly file. Because the PDB file also contains each func-
tion’s starting address, we then use this information to lo-
cate each instruction’s absolute address in the binary file.
This result serves as the ground truth against which the out-
put of BIRD’s disassembler is compared. However, there
could be instructions that BIRD’s disassembler produces
from the binary file that are not present in Visual C++ com-
piler’s assembly output. For instance, statically linked li-
braries that go into the binary do not have their source code
available (an example islibc.lib , a Microsoft visual C
runtime library). Such instructions, as well as other no-op
instructions (e.g.mov eax eax ), are just ignored when
comparing these two assembly outputs.

Table 1 shows the disassembly accuracy and coverage
for several Windows applications compiled with Visual

C++. Disassembly coverage is defined as the percentage of
bytes in the input binary file that the disassembler has suc-
cessfully identified as instructions or data. For all programs
tested, the accuracy of BIRD’s disassembler is 100%. This
demonstrates that the heuristic scoring mechanism used in
BIRD’s disassembler is not overly aggressive. As expected,
the disassembly coverage is not 100%, and ranges from
69% to 96%. This demonstrates the need for BIRD’s dy-
namic disassembling approach.

We then apply BIRD’s disassembler against several pop-
ular Windows applications, whose source code is not avail-
able, and measure their coverage. The results are shown in
Table 2. Because the ground truth is unavailable, we verify
the accuracy of BIRD’s disassembler in two ways. First, we
run these applications under BIRD and monitor their exe-
cution behavior for any major errors. Because BIRD in-
struments an application based on the disassembly result,
disassembly errors lead to incorrect instrumentation, which
in turn may result in execution errors or crash. Second,
we compare BIRD disassembler’s output with the output
of IDApro, which is arguably the most popular commer-
cial disassembler, and check if bytes that BIRD’s disas-
sembler identifies as instructions are also instructions as far
as IDApro is concerned. It is possible IDApro identifies
more instruction bytes than BIRD because it does not re-
quire 100% disassembly accuracy. Throughout these tests,
we are yet to find any disassembly errors in each application
in Table 2. Because all of these applications have a user in-
terface component, which embeds a substantial amount of
data in the code section, it is more difficult to disambiguate
them statically. As a result, the corresponding disassembly
coverage, which ranges from 53% to 78%, is lower than the
batch programs in the first set.

To evaluate the effectiveness of different disassembling
heuristics, we measure the incremental improvement in dis-
assembly coverage from each heuristic. The results are
shown in Table 2. Since pure recursive traversal without
any assumptions usually achieves very low coverage (less
than 1%), we show the result of extended recursive traver-
sal, which speculatively disassembles bytes from instruc-
tions following call instructions. Even then, it can only
achieve a coverage result between 6% to 36%. Exploiting
function prolog pattern significantly boosts the disassembly
coverage because existing compilers generate well-defined
function prologs, and accordingly BIRD’s disassembler as-
signs a higher confidence score. Recognizing bytes corre-
sponding to function call targets and jump table entries fur-
ther improves the disassembly coverage. However, assum-
ing bytes immediately following a jump or return start an
instruction doesn’t seem to do any good here, because com-
pilers indeed put data right after a jump and return instruc-
tion. This is why BIRD’s disassembler gives a zero score
to this heuristic. We use this heuristic only as a way to dis-



Application Code Extended Function Func. Jump Spec. Data Original BIRD
Size Recursive Prologue Call Table Jump & Ident. Startup Startup

(bytes) Traversal Pattern Target Entry Return Delay Penalty
MS Messenger 1052672 13.36% 58.04% 59.81% 66.02% 66.38% 74.62% 857M 11.25%

Powerpoint 4136960 6.65% 34.84% 40.34% 46.51% 47.25% 53.58% 2568M 32.23%
MS Access 4145152 27.19% 56.31% 58.80% 62.24% 62.62% 65.29% 3186M 22.56%
MS Word 7864320 36.35% 71.19% 71.38% 76.35% 76.84% 78.06% 1887M 12.56%

Movie Maker 638976 5.11% 63.59% 68.94% 72.69% 73.88% 74.30% 1892M 14.67%

Table 2: The incremental contributions of different heuristics to the overall disassembly coverage for Windows binaries. The Speculative
Jump/Return technique applies linear sweeping to bytes immediately following a jump/return instruction. The numbers in bold are the final
coverage percentages. The Original Startup Delay is in terms of CPU cycle (M means106) whereas the BIRD Startup Cost is in terms of additional
percentage overhead.

Appl. Orig. BIRD Init DDO Chk Total
Ex(G) Ex(G) Ovhd Ovhd Ovhd

comp 0.19 0.24 14.9% 0.1% 0.2% 15.2%
compact 10.28 10.94 6.4% 0.0% 0.0% 6.4%

find 7.44 7.91 5.6% 0.0% 0.6% 6.2%
lame 1.19 1.34 12.0% 0.0% 0.0% 12.0%
sort 0.26 0.31 16.1% 0.4% 1.4% 17.9%

ncftpget 1.06 1.09 3.4% 0.0% 0.0% 3.4%

Table 3: Increase in execution time for six batch programs un-
der BIRD are due to initialization of DLLs and data structures (Init
Ovhd), checking at all the indirect branches (Chk Ovhd), and invoking
dynamic disassembler on unknown areas (D.D.O, i.e. Dynamic Disas-
sembly Overhead). Breakpoint handling overhead is close to 0 in these
cases and are not shown here. Original and BIRD execution times are
both expressed in number of CPU cycles (G means109).

cover more code, but it turns out that most of these bytes
were uncovered by earlier heuristics already. The ability
to identify data has a noticeable effect on disassembly cov-
erage as it enables early pruning of non-code bytes. As a
result, it achieves non-negligible improvement in disassem-
bly coverage for some applications, e.g., more than 8% for
MS Messenger.

5.2. Run-Time Overhead

The current BIRD prototype can successfully work on
large Windows applications, including MS Office applica-
tions, Internet Explorer, Acrobat reader, etc. However, to
characterize BIRD’s run-time overhead for these interactive
applications, we measure the overhead incurred during their
startup, i.e., the time between when a program is started and
the time when it is ready to receive inputs from the user, on
a Pentium-IV 2.8GHz/256MB Windows XP machine. We
start a timer just prior toCreateProcess() and stop it
just afterWaitForInputIdle() , which corresponds to
the time when the application is ready to receive user inputs.
The last two columns of Table 2 show that the startup de-
lay of these interactive applications is increased by 10% to
35%. Although the startup delay penalty appears substan-
tial, the bulk of this penalty only occurs at program initial-

ization time but not at run time, because it is related to DLL
loading and relocation. That’s why our own usage experi-
ences show that the interactivity of these applications is not
affected at all when they run under BIRD.

Next, we run a set of six batch programs on a Pentium-
IV 2.8GHz/256MB Windows XP machine under BIRD and
measure the increase in program execution time. These
programs arecomp(comparing two 4.4MB files),compact
(compressing a set of twelve binary times in a directory),
find (finding a given string from a 500KB DLL file),lame
(converting a wav audio file to mp3 format),sort (sorting a
500KB ascii file), andncftp(getting a 1KB file through file
transfer protocol from a remote machine). The performance
overhead for these applications come from several sources.
The initialization overhead includes the time spent on read-
ing/initializing UAL and IBT from disassembler output files
and the relocation overhead for system DLLs because they
are modified. The checking overhead, shown in theCheck
Overheadcolumn of Table 3, represents the overhead of
invoking check() . The runtime disassembly overhead,
shown in theDyn. Disasm. Overheadcolumn, shows the
overhead of invoking the dynamic disassembler on the stat-
ically unknown areas. Breakpoint handling overhead is not
shown here because of extremely small penalty (less than
0.005%) involved in these batch programs.

Table 3 shows the break-down of the performance over-
head of these six batch programs running under BIRD. The
initialization overhead dominates all other types of over-
heads, because the loader needs to load the additional DLL,
dyncheck.dll , which implements BIRD’s run-time en-
gine, and relocate system DLLs. Because BIRD instru-
ments a DLL in the same way as it instruments an ex-
ecutable file, the instrumentation could increase a DLL’s
size. The Windows OS tends to load system DLLs in their
preferred locations. When some DLLs grow in size and can-
not fit into the originally allocated space, the loader has to
relocate them. This initialization overhead has no impact on
an application’s run-time performance after the initializa-
tion stage and translates to high performance penalty per-
centage only for short-running applications, which do not



Application Dynamic Dynamic Breakpoint Total
Disassembly Check Handling Ovhd
Overhead Overhead Overhead

Apache 0.12% 0.73% 0.07% 0.9%
BIND 0.26% 2.33% 0.51% 3.1%

IIS W3 service 0.15% 0.83% 0.12% 1.1%
MTSPop3 0.09% 1.31% 0.00% 1.4%

Cerberus FTPD 0.12% 0.94% 0.14% 1.2%
BFTelnetd 0.39% 0.67% 0.44% 1.5%

Table 4:Detailed measurements of binary instrumentation effects on
commercial server applications. The Dynamic Disassembly Overhead
refers to the performance overhead due to invocation of dynamic dis-
assembler. The Dynamic Check Overhead refers to the performance
overhead due to call tocheck() . The Breakpoint Handling Over-
head refers to the performance overhead due toint 3 instructions
that BIRD inserts.

use the loaded DLLs for a sufficiently long period to amor-
tize the incurred cost. Despite the significant initialization
overhead, BIRD still performs much better when compared
with exception-based binary interpretation approaches such
as Valgrind [20].

Finally, we measure the throughput penalty of several
production-mode network server applications when running
under BIRD. More specifically, we send a fixed number
of requests (2000 in these results reported below) to each
server application, and measure the throughput difference
between when it runs under BIRD and when it runs na-
tively. Each request fetches a 1KByte HTML file, FTP file,
mail message, or DNS records, depending on the server be-
ing tested. The server application runs on a Pentium-IV
2.8GHz/256MB Windows XP machine, whereas the client
is a Celeron 500MHz/192MB RedHat 7.2 machine. The re-
sults in Table 4 show that the throughput penalty of BIRD is
below 4%. Theinitialization overheadis ignored as it does
not affect the throughput penalty measurement. In general,
the performance overhead of BIRD does not come from dy-
namic disassembler invocation or breakpoint handling. It is
the number of dynamic checks and lookups (when there is
a known area cache miss) involved that matters the most.
As an application uses more DLLs, it increases the num-
ber of checks and slows down each check. In the case of
BIND, it incurs a significant amount of check overhead be-
cause a larger number of checks at run time and a higher
per-check lookup overhead due to cache misses. In con-
trast, even though the number of dynamic checks for IIS
is comparable to BIND, its per-check lookup overhead is
lower and as a result its total performance overhead is also
smaller.

6. An Application: Foreign Code Detection

To demonstrate the effectiveness of BIRD we apply it to
build a foreign code detectionsystem, which aims to de-
tect un-authorized control transfers to injected or existing

code in an application run. There are several techniques by
which an attacker can inject a piece of code into a running
process, and steer the process’ control to the injected code.
Buffer overflow attacks and format string attacks are two
such techniques. One technique to stop these code-injecting
attacks is a program execution mechanism that can distin-
guish between instructions in an application’s binary file
and instructions that are injected at run time. The foreign
code detection system (FCD) distinguishes between native
and injected instructions based on theirlocation, rather than
contentas employed by [12]. Because FCD assumes its tar-
get applications do not contain any self-modifying code, it
can statically identify all the code sections, including DLLs,
and safely mark them as read-only. At run time, when a con-
trol transfer instruction attempts to jump to an area outside
the code sections, the target must be an injected instruction.
FCD leverages BIRD’s interception mechanism to perform
the check that the target address of each indirect branches
is always within the code sections. In addition, by moving
the entry points of sensitive DLL functions, FCD can also
detect return-to-libc attacks [2].

7. Conclusion

Binary analysis and instrumentation is a key enabling
technology for securing application binaries through pro-
gram transformation. However, perfect static disassembly is
almost impossible for commercially distributed binaries on
the Windows/x86 platform, because they do not come with
any debugger information such as symbol table, relocation
table, etc. Microsoft’s Vulcan requires a binary’s full PDB
file in order to completely disassemble it. As a result, exist-
ing security-enhancing program transformation techniques
rarely can be applied to commercial Windows applications.
This paper describes the design, implementation and evalu-
ation of a binary analysis and instrumentation infrastructure
called BIRD (Binary Interpretation using Run-time Disas-
sembly), which combines static and dynamic disassembly
in a novel way to achieve both 100% coverage/accuracy and
low run-time overhead for Windows/x86 binaries. As a re-
sult, we expect BIRD to become a key building block in
future software security systems.

The current BIRD prototype can successfully run large
Windows applications such as Microsoft Office suite, Inter-
net Explorer, IIS, Acrobat Reader, etc., and the additional
non-startup runtime performance overhead is under 5%. By
leveraging disassembling techniques extensively, BIRD is
much simpler in design/implementation complexity when
compared with other similar systems that require a high-
fidelity instruction set architecture emulator. For example,
the current BIRD prototype takes fewer than 12 graduate
student months to complete. To demonstrate the usefulness
of BIRD, we successfully develop a foreign code detection



system based on BIRD that guarantees no foreign code in-
jected at run time can be executed in the protected applica-
tion, and that no un-authorized control transfers to sensitive
DLL functions are possible. This demonstration application
itself takes fewer than 5 months to complete. Finally, as part
of this project’s development efforts, we performed a com-
prehensive study on the effectiveness of various disassem-
bling techniques in terms of their coverage and accuracy.
We believe this is the first time such accuracy and coverage
results ever appear in the open literature.

We are currently enhancing the instrumentation API for
BIRD so that it can be used as a general binary instrumen-
tation system. We are also applying BIRD to other secu-
rity applications such as system call pattern extraction, at-
tack signature extraction, and automatic post-intrusion re-
pair. Finally, we are extending BIRD according to the ar-
chitecture described in Section 4.5 so that it can success-
fully instrument general self-modifying binaries with low
overhead.

References

[1] Microsoft msdn library. http://msdn.microsoft.com/library/.
[2] phrack. http://www.phrack.org/.
[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a trans-

parent dynamic optimization system.ACM SIGPLAN No-
tices, 35(5):1–12, 2000.

[4] Bochs. Bochs: The cross platform ia-32 emulator.
http://bochs.sourceforge.net/, 2001.

[5] B.R.Buck and J.K.Hollingsworth. An api for runtime code
patching.Journal of High Performance Computing Applica-
tions, 14(4):317–329, 2000.

[6] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design
and implementation of a dynamic optimization framework
for windows. In4th ACM Workshop on Feedback-Directed
and Dynamic Optimization (FDDO-4), December 2000.

[7] C. Cifuentes and M. V. Emmerik. Recovery of jump table
case statements from binary code. InIWPC ’99: Proceed-
ings of the 7th International Workshop on Program Compre-
hension, page 192, Washington, DC, USA, 1999. IEEE Com-
puter Society.

[8] C. Cifuentes, M. V. Emmerik, D. S. D Ung, and T. Wadding-
ton. Preliminary experiences with the use of the uqbt binary
translation framework. InProceedings of the Workshop on
Binary Translation, 10 1999.

[9] P. Dabak, M. Borate, and S. Phadke. Undocumented Win-
dows NT. M and T Books, October 1999.

[10] C. C. et al. StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-overflow Attacks. In7th USENIX Secu-
rity Symposium, 1998.

[11] T. R. et al. Instrumentation and optimization of win32/intel
executables using etch, 1997.

[12] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
code-injection attacks with instruction-set randomization. In
Proceedings of the 10th ACM conference on Computer and
communications security, pages 272–280. ACM Press, 2003.

[13] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure ex-
ecution via program shepherding. In11th USENIX Security
Symposium, 2002.

[14] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Sta-
tic disassembly of obfuscated binaries. InUSENIX Security
Symposium 2004, pages 255–270.

[15] L. Lam and T. Chiueh. Automatic extraction of accurate
application-specific sandboxing policy. InSeventh Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion, September 2004.

[16] J. R. Larus and E. Schnarr. EEL: Machine-independent ex-
ecutable editing. InSIGPLAN Conference on Programming
Language Design and Implementation, pages 291–300, 1995.

[17] C. Linn and S. Debray. Obfuscation of executable code to
improve resistance to static disassembly. InCCS ’03: Pro-
ceedings of the 10th ACM conference on Computer and com-
munications security, pages 290–299. ACM Press, 2003.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
building customized program analysis tools with dynamic in-
strumentation. InPLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, pages 190–200, New York, NY, USA, 2005.
ACM Press.

[19] J. Maebe, M. Ronsse, and K. D. Bosschere. Diota: Dynamic
instrumentation, optimization and transformation of applica-
tions. InProceedings of the 4th Workshop on Binary Trans-
lation, 2002.

[20] N. Nethercote and J. Seward. Valgrind: A program supervi-
sion framework. Electronic Notes in Theoretical Computer
Science, 89(2), 2003.

[21] Plex86. Plex86 x86 virtual machine.
http://savannah.nongnu.org/projects/plex86.

[22] M. Prasad and T. cker Chiueh. A binary rewriting defense
against stack-based buffer overflow attacks. InUSENIX An-
nual Technical Conference, pages 211–224, 2003.

[23] B. Schwarz, S. Debray, and G. Andrews. Plto: A link-time
optimizer for the intel ia-32 architecture. InProc. 2001 Work-
shop on Binary Translation (WBT-2001), Sept 2001.

[24] B. Schwarz, S. Debray, and G. Andrews. Disassembly
of executable code revisited. InWCRE ’02: Proceedings
of the Ninth Working Conference on Reverse Engineering
(WCRE’02), page 45. IEEE Computer Society, 2002.

[25] K. Scott and J. Davidson. Strata: A software dynamic trans-
lation infrastructure. InProceedings of the 2001 Workshop
on Binary Translation, 2001.

[26] K. Scott, J. Davidson, and K. Skadron. Low-overhead soft-
ware dynamic translation. Technical Report CS-2001-18,
July 2001.

[27] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary Trans-
formation in a Distributed Environment. Technical Report
MSR-TR-2001-50, 2001.

[28] A. Srivastava and A. Eustace. Atom: a system for build-
ing customized program analysis tools.SIGPLAN Not.,
39(4):528–539, 2004.

[29] A. Srivastava and D. W. Wall. A practical system for inter-
module code optimization at link-time.Journal of Program-
ming Languages, 1(1):1–18, December 1992.

[30] UPX. the ultimate packer for executables.
http://upx.sourceforge.net/.

[31] E. Witchel and M. Rosenblum. Embra: Fast and flexible
machine simulation. InMeasurement and Modeling of Com-
puter Systems, pages 68–79, 1996.


